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1. INTRODUCTION

The vibration of membrane is a subject of considerable scienti"c and practical interest as it
is a popular element in nature and technology. Membranes are widely used as transducers
that convert energy from one form to another [1].

Several investigators [1}11] have tackled the study of vibrating membranes with
varying density. The studies are analytical [2, 7, 8, 10, 11] and numerical [1, 3}6, 9]
in nature. The objective of this letter is to draw attention to two families of solutions
for the traverse vibration of annular membranes with continuously varying
densities. Transformations for obtaining solutions for these pro"les are presented.
The solutions are obtained in terms of special functions. Using these transformations,
speci"c examples are worked out. The eigenvalues corresponding to the "rst two
modes are presented for some cases, and their dependence on the density variation is
discussed.

2. THE EQUATION OF MOTION

The current work deals with two situations: (1) a solid circular membrane of radius R, (2)
an annular membrane of outer radius R and inner radius R0 .

The membrane density is assumed to be of the form

o (r)"o
0

f (r), (1)

where r"r8 /R and r8 is the radius. For the axisymmetric modes of vibration of a solid
circular membrane or an annular membrane of outer radius R and inner radius R

0
, the

governing di!erential equation for the displacement=(r) [9, 12] is

d2=

dr2
#

1

r

d=

dr
#X2 f (r)="0, 0)r

0
)r)1, (2)

where r0"R0/R, and the non-dimensional frequency X"uRJo
0
/S, S is the tension per

unit length. The boundary conditions for the solid circular membrane is

=(1)"0, =@(0)"0 (3)
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and for the annular case is

=(r
0
)"=(1)"0. (4)

Equation (2) has variable coe$cients. Therefore, exact solutions of this equation for
a general density variation f (r) cannot be obtained. However, for certain speci"c density
variations, exact solutions can be obtained. In the following sections, using appropriate
transformations, equation (3) will be reduced to analytically solvable di!erential equations
for two families of density pro"les.

3. SOLUTIONS IN TERMS OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

In this section, a general transformation for obtaining a family of solutions in the form of
Kummer's hypergeometric functions is presented. Assuming a functional dependence for
= of the form

=(r)"rPeg(r)F (r). (5)

Equation (3) reduces to

rFA(r)#[(2P#1)#2rg@(r)]F@(r)#
f(r)
r

F(r)"0, (6)

where

f(r)"r2(gA(r)#g@2(r))#(2P#1) rg@(r)#P2#X2r2f (r). (7)

Assuming g (r) to be of the form

g (r)"
/rn

n
(8)

equation (7) will reduce to

rFA(r)#[(2P#1)#2/rn]F@(r)#
f
r
F (r)"0. (9)

Equation (10) can be further simpli"ed by introducing b, k and l such that

b (r)"
f
rn

, k"2P#1 and l"2/. (10a)

This yields

rFA (r)#[k#lrn]F@ (r)#brn~1F(r)"0. (10b)

Using the transformation s"qrn, equation (10b) can be reduced to the following
Kummer's con#uent hypergeometric equation [13, 14] when b (and therefore e) is
a constant:

sFA(s)#[c!s]F@ (s)!eF(s)"0, (11)

where, c"1#(k!1)/n, e"!b/n2q and q"!l/n.
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The solution to equation (11) can be expressed in the form of Kummer's con#uent
hypergeometric function [13}15]

F (s)"C
11

F
1
(e; c; s)#C

2
; (e; c; s). (12)

The function
1
F

1
is sometimes referred to as M. Substituting g (r) (give by equation (8)) into

the expression for f(r) (equation (7)) yields

/2r2n#/rnC2P#n!
b
/D#P2#X2r2f (r)"0. (13)

Assuming a functional dependence of f (r) of the form

f (r)"
A

r2
#Brt#Crm (14)

equation (13) will be satis"ed, for a constant b, if

t"2n!2, m"n!2, P"iXJA, /"iXJB and b"/C2P#n#
X2C

/ D. (15)

Therefore, a function f (r) of the following form yields a solution in the form of Kummer's
con#uent hypergeometric function.

f (r)"
A

r2
#Br2n~2#Crn~2, (16)

where n can be any complex number in general.
The solution of equation (3) for an f (r) of the form given by equation (16) can now be written
as [13}15]

=(r)"r*XJAe(*XJB@n)rnAC11
F
1C!

1

2nAiX
C

JB
!(2P#n)B ; 1#

i2XJA

n
;!

i2XJB

n
rnD

#C
2
;C!

1

2nAiX
C

JB
!(2P#n)B; 1#

i2XJA

n
;!

i2XJB

n
rnDB. (17)

Example 1. f (r)"1#ar2. This pro"le can be obtained by making A"0, n"2,B"a
and C"1 in equation (16). This results in the following transformation:

="F (r) e(ar2@2), where a"iJaX2 and s"!ar2. (18)

Equation (3) can be reduced to the con#uent hypergeometric equation [13}15]

sFA#F@[1!s]!
1

2aCa#
X2

2 DF"0. (19)

The solution for = can then be written in the form of equation (17) with

F (s)"C
11

F
1
(d; 1; s)#C

2
; (d; 1; s), (20)



TABLE 1

Fundamental frequency ( f (r)"1#ar2)

a

R
0

0)5 1 1)5 2 2)5 3

0 2)2819 2)1736 2)0778 1)9925 1)9162 1)8474
0)1 3)0736 2)8754 2)7092 2)5678 2)4456 2)3389
0)2 3)4969 3)2431 3)0538 2)8627 2)7157 2)5887
0)3 3)9943 3)6730 3)4171 3)2073 3)0315 2)8014
0)4 4)6320 4)2233 3)9054 3)6493 3)4374 3)2584
0)5 5)5071 4)9782 4)5762 4)2572 3)9974 3)7794
0)6 6)8050 6)0985 5)5737 5)1642 4)8333 4)5587
0)7 8)9546 7)9558 7)2300 6)6722 6)2262 5)8591
0)8 13)2394 11)6616 10)5397 9)6895 9)0166 8)4668

TABLE 2

Second mode ( f (r)"1#ar2)

a

R
0

0)5 1 1)5 2 2)5 3

0 5)1412 4)8416 4)5969 4)3914 4)215 4)0608
0)1 6)3195 5)9011 5)5622 5)2791 5)0373 4)8271
0)2 7)1061 6)5875 6)173 5)8307 5)5411 5)2917
0)3 8)066 7)4189 6)9101 6)4955 6)1486 5)8526
0)4 9)3186 8)5003 7)8687 7)3613 6)9417 6)5869
0)5 11)0525 9)9958 9)1962 8)5634 8)0459 7)6126
0)6 13)6365 12)2255 11)1795 10)3638 9)7044 9)1569
0)7 17)9269 15)9312 14)4825 13)3691 12)4786 11)7454
0)8 26)4893 23)3353 21)0933 19)3943 18)0492 16)9502
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where

d"
1

2aCa#
X2

2 D. (21)

A simple midpoint root "nding scheme was used to obtain the roots of the characteristic
equation. Tables 1 and 2 show the values of X (fundamental and second frequency
coe$cients, respectively) for solid circular and annular membranes with r0 varying from 0 to
0)8 and a varying from 0)5 to 3)0. As r0 increases, the natural frequency increases. The trend
of the natural frequencies decreasing with increasing a can also be clearly seen from these
results.

This problem has been studied numerically by Gutierrez et al. [9] using (1) di!erential
quadrature method, (2) "nite element method (3) an optimized and/or improved Rayleigh
quotient method, and (4) a lower bound based on the Stodola}Vianello method. The
natural frequencies given by them are in excellent agreement with the results presented
above calculated using the closed-form solution.
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Note that the hypergeometric ; function tends to in"nity when r
0
"0. Therefore, the

coe$cient of this function was chosen to be zero, in order to make the displacement "nite at
r"0. The derivative of

1
F
1

when r
0
"0 is zero, and therefore = @ (r) is zero. The

eigenvalues obtained were in excellent agreement with the values given by Gutierrez
et al. [8].

Example 2. f (r)"1#a/r . This pro"le can be obtained by making A"0, n"1,B"1
and C"a in equation (17). Equation (3) can then be transformed to equation (11) in the
form

suA#[1!s]u@!
[1!iaX]

2
u"0, (22)

where

="u (r)e*Xr and s"!i2Xr. (23)

The solution to equation (22) is

u (s)"C
11

F
1
(d; 1; s)#C

21
F

1
; (d; 1; s), (24)

where

d"C
1!iaX

2 D.
Tables 3 and 4 show the "rst and second eigenfrequencies for an annular membrane. As in

the previous example, the natural frequencies increase with r
0

and decreases with a.

Example 3. f (r)"arN, where N can be any real number (integer or non-integer).
This case worked out in by De [2], can be obtained by setting A"0, B"0 and
n"N#2.

Using the transformation

r"bxe, b"A
1

ae2X2B
1@N`2

and e"
2

2#N
,

TABLE 3

Fundamental frequency ( f (r)"1#a/r)

a

R
0

0)5 1 1)5 2 2)5 3

0)1 2)3129 1)8762 1)6189 1)4472 1)3168 1)2177
0)2 2)7646 2)2735 1)9755 1)7704 1)6181 1)4994
0)3 3)2813 2)726 2)3814 2)1412 1)9615 1)8205
0)4 3)934 3)2955 2)892 2)6076 2)3934 2)2245
0)5 4)8212 4)0678 3)5839 3)2396 2)9786 2)7719
0)6 6)1297 5)2045 4)6016 4)169 3)8392 3)577
0)7 8)2888 7)0776 6)2794 5)6996 5)2564 4)9027
0)8 12)5823 10)7988 9)6072 8)7392 8)0706 7)5352



TABLE 4

Second mode ( f (r)"1#a/r)

a

R
0

0)5 1 1)5 2 2)5 3

0)1 4)6807 3)7871 3)2666 2)9153 2)6575 2)458
0)2 5)569 4)5703 3)9695 3)557 3)2513 3)013
0)3 6)5924 5)496 4)776 4)2938 3)9334 3)6508
0)4 7)8907 6)6039 5)7937 5)2235 4)7943 4)456
0)5 9)6597 8)1453 7)1749 6)4852 5)9625 5)5488
0)6 12)2722 10)4161 9)2084 8)3423 7)6822 7)1575
0)7 16)5866 14)1603 12)5594 11)4022 10)5154 9)8078
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equation (3) can be transformed to the following Bessel's di!erential equation:

=A(x)#
1

x
=@(x)#=(x)"0. (25)

The solution to this equation can be expressed in terms of Bessel and Neumann functions as

= (x)"c
1
J
0
(x)#c

2
>

0
(x). (26)

This relation can be obtained from equation (17) by using the identities [15]

lim
l?=

1
F
1Al,m,!

z

lB"z1@2~(1@2)mJ
m~1

(2Jz) and

lim
l?=

;Al, m,!
z

lB"z1@2~(1@2)m>
m~1

(2Jz). (27)

4. FAMILY OF SOLUTIONS OF f (r)"[1#a ln(r)]p/r2

Another family of exact solutions exists for a non-homogenous annular membrane when
the density pro"le is of the form

f (r)"
[1#a ln(r)]p

r2
, aO0. (28)

By using the following functional transformations:

g"ln(r), h"(1#ag)1@2l, ="hlZ, l"
1

p#2
. (29)

Equation (3) solution reduces to a Bessel equation

d2Z

dh2
#

1

h
dZ

dh
#Ac2!

l2
h2BZ"0, (30)

where c"2lX/DaD, aO0.
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The solution to equation (30) is

Z"C
1
Jl (ch)#C

2
J
~l(ch) where l is a non-integer, (31a)

Z"C
1
Jl(ch)#C

2
>l (ch) where l is a integer. (31b)

It is interesting to note that the solution for the special case of f (r)"1/r2, given by Wang
[8] can be obtained by letting p"0 in equation (28). The solution can then be written using
equation (31a) as

Z"C
1
J
1@2

(ch)#C
2
J
~1@2

(ch)"C
1

1

Jh
sin(ch)#C

2

1

Jh
cos(ch), (32)

="JhCC1

1

Jh
sin(ch)#C

2

1

Jh
cos(ch)D, (33)

where f"(1#ag). (34)
Simplifying, and using the above expression of h reduces the solution to the following

form given in reference [8]:

=(r)"C
1

sin(c(1#a ln(r)))#C
2

cos(c(1#a ln(r))). (35)

5. CONCLUSIONS

Exact analytical solutions describing the axisymmetric vibrations of solid circular and
annular membranes with continuously varying density were obtained by transforming the
equation of motion to standard di!erential equations that are analytically solvable in terms
of special functions. An approach for obtaining solutions for families of density pro"les is
presented. The solutions are obtained in terms of Kummer's con#uent hypergeometric and
Bessel functions. It is shown that the natural frequency increases with the inner radius of the
annulus and decreases with the inhomogeneity parameter a. The natural frequencies
calculated for the density pro"le f (r)"1#ar2 are in excellent agreement with the
numerical solutions presented in a previous study. The expressions presented in this paper
are in terms of special functions that can easily be evaluated. The closed-form expressions
presented herein can also be used as benchmarks for checking the results obtained from
numerical or approximate methods.
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